Determinants of redox sensitivity in RsrA, a zinc-containing anti-sigma factor for regulating thiol oxidative stress response
نویسندگان
چکیده
Various environmental oxidative stresses are sensed by redox-sensitive regulators through cysteine thiol oxidation or modification. A few zinc-containing anti-sigma (ZAS) factors in actinomycetes have been reported to respond sensitively to thiol oxidation, among which RsrA from Streptomyces coelicolor is best characterized. It forms disulfide bonds upon oxidation and releases bound SigR to activate thiol oxidative stress response genes. Even though numerous ZAS proteins exist in bacteria, features that confer redox sensitivity to a subset of these have been uncharacterized. In this study, we identified seven additional redox-sensitive ZAS factors from actinomycetes. Comparison with redox-insensitive ZAS revealed characteristic sequence patterns. Domain swapping demonstrated the significance of the region K(33)FEHH(37)FEEC(41)SPC(44)LEK(47) that encompass the conserved HX(3)CX(2)C (HCC) motif. Mutational effect of each residue on diamide responsive induction of SigR target genes in vivo demonstrated that several residues, especially those that flank two cysteines (E39, E40, L45, E46), contribute to redox sensitivity. These residues are well conserved among redox-sensitive ZAS factors, and hence are proposed as redox-determinants in sensitive ZAS. H37A, C41A, C44A and F38A mutations, in contrast, compromised SigR-binding activity significantly, apparently affecting structural integrity of RsrA. The residue pattern around HCC motif could therefore serve as an indicator to predict redox-sensitive ZAS factors from sequence information.
منابع مشابه
The Role of zinc in the disulphide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolor.
The regulation of disulphide stress in actinomycetes such as Streptomyces coelicolor is known to involve the zinc-containing anti-sigma factor RsrA that binds and inactivates the redox-regulated sigma factor sigmaR. However, it is not known how RsrA senses disulphide stress nor what role the metal ion plays. Using in vitro assays, we show that while zinc is not required for sigmaR binding it is...
متن کاملAssignment of the zinc ligands in RsrA, a redox-sensing ZAS protein from Streptomyces coelicolor.
ZAS proteins are widespread bacterial zinc-containing anti-sigma factors that regulate the activity of sigma factors in response to diverse cues. One of the best characterized ZAS proteins is RsrA from Streptomyces coelicolor, which responds to disulfide stress. Zn-RsrA binds and represses the transcriptional activity of sigmaR in the reducing environment of the cytoplasm but undergoes reversib...
متن کاملThe anti-sigma factor RsrA responds to oxidative stress by reburying its hydrophobic core
Redox-regulated effector systems that counteract oxidative stress are essential for all forms of life. Here we uncover a new paradigm for sensing oxidative stress centred on the hydrophobic core of a sensor protein. RsrA is an archetypal zinc-binding anti-sigma factor that responds to disulfide stress in the cytoplasm of Actinobacteria. We show that RsrA utilizes its hydrophobic core to bind th...
متن کاملZinc center as redox switch--new function for an old motif.
Oxidative stress affects a wide variety of different cellular processes. Now, an increasing number of proteins have been identified that use the presence of reactive oxygen species or alterations in the cellular thiol-disulfide state as regulators of their protein function. This review focuses on two members of this growing group of redox-regulated proteins that utilize a cysteine-containing zi...
متن کاملFRET-Based System for Probing Protein-Protein Interactions between σR and RsrA from Streptomyces Coelicolor in Response to the Redox Environment
Protein-protein interactions between sigma factor σ(R) and its corresponding zinc-binding anti-sigma (ZAS) protein RsrA trigger the thioredoxin system for maintaining cellular redox homeostasis in S. coelicolor. RsrA bound to zinc associates with σ(R), inhibiting its transcriptional activity in a reducing environment. During disulfide stress it forms intramolecular disulfide bonds, leading to z...
متن کامل